Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220359, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37899019

RESUMEN

Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Asunto(s)
Ecosistema , Contaminación Lumínica , Animales , Conducta Predatoria , Invertebrados , Luz , Insectos
2.
Mov Ecol ; 11(1): 27, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194049

RESUMEN

Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming. Here, we measured the exploratory speed of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal temperature response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. Overall, these findings will help improve our understanding of how temperature effects on movement cascade from small to large spatial scales as well as from individual to population fitness and survival across communities.

3.
Glob Chang Biol ; 29(13): 3747-3758, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186484

RESUMEN

Anthropogenic global warming has major implications for mobile terrestrial insects, including long-term effects from constant warming, for example, on species distribution patterns, and short-term effects from heat extremes that induce immediate physiological responses. To cope with heat extremes, they either have to reduce their activity or move to preferable microhabitats. The availability of favorable microhabitat conditions is strongly promoted by the spatial heterogeneity of habitats, which is often reduced by anthropogenic land transformation. Thus, it is decisive to understand the combined effects of these global change drivers on insect activity. Here, we assessed the movement activity of six insect species (from three orders) in response to heat stress using a unique tracking approach via radio frequency identification. We tracked 465 individuals at the iDiv Ecotron across a temperature gradient up to 38.7°C. In addition, we varied microhabitat conditions by adding leaf litter from four different tree species to the experimental units, either spatially separated or well mixed. Our results show opposing effects of heat extremes on insect activity depending on the microhabitat conditions. The insect community significantly decreased its activity in the mixed litter scenario, while we found a strong positive effect on activity in the separated litter scenario. We hypothesize that the simultaneous availability of thermal refugia as well as resources provided by the mixed litter scenario allows animals to reduce their activity and save energy in response to heat stress. Contrary, the spatial separation of beneficial microclimatic conditions and resources forces animals to increase their activity to fulfill their energetic needs. Thus, our study highlights the importance of habitat heterogeneity on smaller scales, because it may buffer the consequences of extreme temperatures of insect performance and survival under global change.


Asunto(s)
Calor , Insectos , Animales , Temperatura , Ecosistema , Respuesta al Choque Térmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...